Part Number Hot Search : 
67798LA MAX14805 107M010 AD7871JN L4812 16E12 NTE308 599101
Product Description
Full Text Search
 

To Download V23990-K428-A40-D3-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k428-a40-pm miniskiip? 3 pim 1200v / 50a solderless interconnection trench fieldstop igbt4 technology v23990-k428-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v maximum junction temperature t j max 150 c inverter transistor t sc t j =150c 10 s v cc v ge =15v 800 v 175 40 surge forward current power dissipation per diode i 2 t p tot 62 w t h =80c t h =80c 88 150 maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gate-emitter peak voltage a v c v w a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max input rectifier diode features m iniskiip? 3 housing target applications schematic t h =80c dc forward current t j =t j max t p =10ms a 1020 t j =25c t h =80c 450 50 a 1200 20 i cpulse i c collector-emitter break down voltage repetitive peak collector current dc collector current v ce t j =t j max t j =t j max t p limited by t j max industrial drives copyright vincotech 1 revision: 3
v23990-k428-a40-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode brake transistor t sc t j =150c 10 s v cc v ge =15v 800 v brake diode thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition c storage temperature t stg -40+125 c -40+(tjmax - 25) repetitive peak reverse voltage v rrm power dissipation per diode p tot t j =t j max t j =t j max dc forward current 1200 t h =80c c maximum junction temperature t j max 175 v rrm dc forward current i f 35 t h =80c 66 335 repetitive peak reverse voltage i frm t j max t j =t j max t p limited by t j max repetitive peak forward current power dissipation per diode p tot t j =t j max i c p tot v ce i cpuls i f repetitive peak forward current i frm t p limited by t j max v ge t j =t j max w a v a v w a a 175 maximum junction temperature c collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt v a v c w a 175 t j max t p limited by t j max t j =t j max t h =80c t h =80c 45 101 150 20 1200 1200 38 335 70 t h =80c t h =80c copyright vincotech 2 revision: 3
v23990-k428-a40-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,03 1,35 tj=125c 0,93 tj=25c 0,9 tj=125c 0,74 tj=25c 0,004 tj=125c 0,006 tj=25c 0,1 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 1,14 thermal resistance chip to case per chip r thjc n/a tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,91 2,4 tj=150c 2,39 tj=25c 0,06 tj=150c tj=25c 600 tj=150c tj=25c 106 tj=150c 111 tj=25c 18 tj=150c 25 tj=25c 228 tj=150c 298 tj=25c 84 tj=150c 125 tj=25c 2,66 tj=150c 4,46 tj=25c 2,78 tj=150c 4,58 thermal resistance chip to heatsink per chip r thjh 1,09 thermal resistance chip to case per chip r thjc n/a tj=25c 1,5 2,19 2,9 tj=150c 2,21 tj=25c 61,3 tj=150c 70,7 tj=25c 144 tj=150c 312 tj=25c 3,74 tj=150c 8,8 di(rec)max tj=25c 3494 /dt tj=150c 950 tj=25c 1,38 tj=150c 3,48 thermal resistance chip to heatsink per chip r thjh 1,44 thermal resistance chip to case per chip r thjc n/a a 50 mws ns v m a ns v pf nc k/w k/w c mws a/s 2770 4 380 205 160 thermal grease thickness 50 m =1w/mk t hermal grease thickness 50 m =1w/mk 1 500 600 50 15 600 0 20 50 rgoff=8 collector-emitter cut-off current incl. diode f all time turn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor turn-on energy loss per pulse 0,0017 f=1mhz 25 0 thermal grease thickness 50 m =1w/mk r everse current i r k/w v v ma 3 5 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions collector-emitter saturation voltage inverter transistor gate emitter threshold voltage t d(on) c rss input capacitance output capacitance turn-off energy loss per pulse r gint t f e on e off i ges v ge(th) v ce(sat) i ces reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge inverter diode c ies q rr t rr v f erec c oss i rrm q gate t r t d(off) v ce =v ge 15 rgon=8 15 r gon=8 15 v n a 1200 50 tj=25c tj=25c copyright vincotech 3 revision: 3
v23990-k428-a40-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,85 2,4 tj=150c 2,28 tj=25c 0,06 tj=150c tj=25c 600 tj=150c tj=25c 105 tj=150c 111 tj=25c 18 tj=150c 31 tj=25c 223 tj=150c 295 tj=25c 87 tj=150c 132 tj=25c 2,63 tj=150c 5,57 tj=25c 2,68 tj=150c 4,59 thermal resistance chip to heatsink per chip r thjh 0,94 thermal resistance chip to case per chip r thjc n/a tj=25c 1,5 2,12 2,9 tj=150c 2,1 tj=25c 60 tj=150c 5100 tj=25c 60,6 tj=150c 40,3 tj=25c 145 tj=150c 560 tj=25c 3,61 tj=150c 8,54 di(rec)max tj=25c 3649 /dt tj=150c 154 tj=25c 1,31 tj=150c 3,32 thermal resistance chip to heatsink per chip r thjh 1,36 thermal resistance chip to case per chip r thjc n/a t=25c t=100c t=100c 160 380 1200 600 25 600 50 50 15 15 20 thermistor brake diode v v 4 n s mws 205 2770 1200 0 ma na 15 i ges rgon=8 rgoff=8 v ce =v ge reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm diode forward voltage reverse leakage current rgon=8 r/r r100=1670 thermal grease t hickness 50 m =1w/mk r ated resistance r power dissipation constant deviation of r100 mw/k r100 p 1670,313 brake transistor k/w n c integrated gate resistor thermal grease thickness 50 m =1w/mk 0 f =1mhz 15 c oss e on c rss c ies peak rate of fall of recovery current peak reverse recovery current reverse recovered charge fall time turn-off energy loss per pulse reverse transfer capacitance e off turn-on energy loss per pulse t f t d(on) t r r gint turn-on delay time gate charge input capacitance output capacitance q gate rise time turn-off delay time t d(off) gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter cut-off incl diode gate emitter threshold voltage 50 collector-emitter saturation voltage 0,0017 50 tj=25c tj=25c 3 -3 k/w % 1000 m ws c v pf a n s a/s a t=25c a-value b(25/50) tol. % t=25c 7,635*10-3 1/k b-value b(25/100) tol. % t=25c 1,731*10-5 1/k2 vincotech ntc reference e copyright vincotech 4 revision: 3
v23990-k428-a40-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fred typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 30 60 90 120 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 3
v23990-k428-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 7 o utput inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a output inverter e on high t e off high t e on low t e off low t 0 2 4 6 8 10 0 10 20 30 40 50 60 70 80 90 100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 8 16 24 32 40 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 0 10 20 30 40 50 60 70 80 90 100 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 0 8 16 24 32 40 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 6 r evision: 3
v23990-k428-a40-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 11 o utput inverter fred figure 12 output inverter fred typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 80 90 100 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,2 0,4 0,6 0,8 0 8 16 24 32 40 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0,2 0,4 0,6 0,8 0 10 20 30 40 50 60 70 80 90 100 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 7 r evision: 3
v23990-k428-a40-pm figure 13 output inverter fred figure 14 output inverter fred typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 15 o utput inverter fred figure 16 output inverter fred typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 30 60 90 120 150 0 8 16 24 32 40 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 10 12 0 8 16 24 32 40 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 100 0 10 20 30 40 50 60 70 80 90 100 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 3 6 9 12 15 0 10 20 30 40 50 60 70 80 90 100 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 8 r evision: 3
v23990-k428-a40-pm figure 17 output inverter fred figure 18 output inverter fred typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,09 k/w r thjh = 1,44 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,04 9,5e+00 0,03 9,7e+00 0,23 1,0e+00 0,26 9,0e-01 0,58 2,3e-01 0,72 1,8e-01 0,15 3,4e-02 0,27 3,1e-02 0,05 4,3e-03 0,11 4,0e-03 0,03 4,0e-04 0,05 5,8e-04 output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt di rec /dt 0 2000 4000 6000 8000 10000 0 8 16 24 32 40 r gon ( w ww w ) di rec / dt (a/ m s) 0 1000 2000 3000 4000 5000 0 10 20 30 40 50 60 70 80 90 100 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 150 25 / 150 copyright vincotech 9 r evision: 3
v23990-k428-a40-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fred figure 24 output inverter fred power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 3
v23990-k428-a40-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 50 a t h = 80 oc v ge = 15 v t j = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 q g (nc) v ge (v) 240v 960v copyright vincotech 11 revision: 3
v23990-k428-a40-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fred typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 30 60 90 120 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 12 revision: 3
v23990-k428-a40-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 7 b rake igbt figure 8 brake igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 1 2 3 4 5 0 10 20 30 40 50 60 70 80 90 100 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 0 8 16 24 32 40 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 3 6 9 12 15 0 10 20 30 40 50 60 70 80 90 100 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 3 6 9 12 15 0 8 16 24 32 40 r g ( w ww w ) e (mws) copyright vincotech 13 revision: 3
v23990-k428-a40-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 11 b rake igbt figure 12 brake fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,94 k/w r thjh = 1,36 k/w brake t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 80 90 100 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 14 revision: 3
v23990-k428-a40-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fred figure 16 brake fred power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 150 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 15 revision: 3
v23990-k428-a40-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,138 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 30 60 90 120 150 0 0,3 0,6 0,9 1,2 1,5 1,8 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 16 revision: 3
v23990-k428-a40-pm figure 1 thermistor typical ntc characteristic a s a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 1000 1200 1400 1600 1800 2000 25 50 75 100 125 t (c) r/  copyright vincotech 17 revision: 3
v23990-k428-a40-pm t j 150 c r gon 8  r goff 8  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,30  s t don = 0,11  s t eoff = 0,68  s t eon = 0,35  s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,13  s t r = 0,03  s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 -20 10 40 70 100 130 160 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,2 0,25 0,3 0,35 0,4 0,45 0,5 time (us) % v ce i c t f i c10% i c 90% -50 0 50 100 150 200 250 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % tr v ce ic copyright vincotech 18 revision: 3
v23990-k428-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 29,95 kw p on (100%) = 29,95 kw e off (100%) = 4,58 mj e on (100%) = 4,46 mj t eoff = 0,68 s t eon = 0,35 s figure 78 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 50 a i rrm (100%) = -71 a t rr = 0,31 s switching definitions output inverter i c 1% v ge 90% -30 -10 10 30 50 70 90 110 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % p off e off t eoff u ce3% u ge10% -30 10 50 90 130 170 210 2,88 2,98 3,08 3,18 3,28 3,38 3,48 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% trr -160 -120 -80 -40 0 40 80 120 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % id vd fitted copyright vincotech 19 revision: 3
v23990-k428-a40-pm figure 8 output inverter fred figure 9 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 29,95 kw q rr (100%) = 8,80 c e rec (100%) = 3,48 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % id q rr -20 0 20 40 60 80 100 120 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % p rec erec te rec copyright vincotech 20 revision: 3
v23990-k428-a40-pm version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v23990-k428-a40-/0a/-pm k428a40 k428a40-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k428-a40-/1a/-pm k428a40 k428a40-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k428-a40-/0b/-pm k428a40 k428a40-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k428-a40-/1b/-pm k428a40 k428a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 21 revision: 3
v23990-k428-a40-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 22 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-K428-A40-D3-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X